# Surface Reconstruction and 3D Gaussian Splatting *Overview of the research*

### Antoine Guédon

Imagine Team LIGM, Ecole des Ponts (ENPC), Univ Gustave Eiffel, CNRS, France

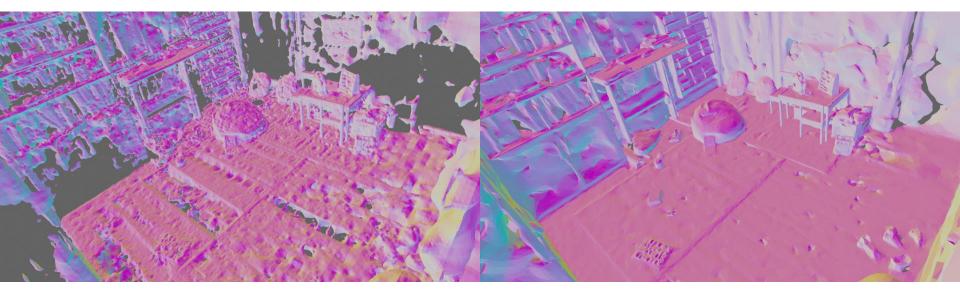


## Introduction

The **mesh** is still the **default representation** used in computer graphics (animation, video games...) because:

- $\rightarrow$  It is memory efficient
- → It is easily deformable/editable/riggable
- → It allows for physics-based interactions (collisions, relighting on surfaces, etc.)

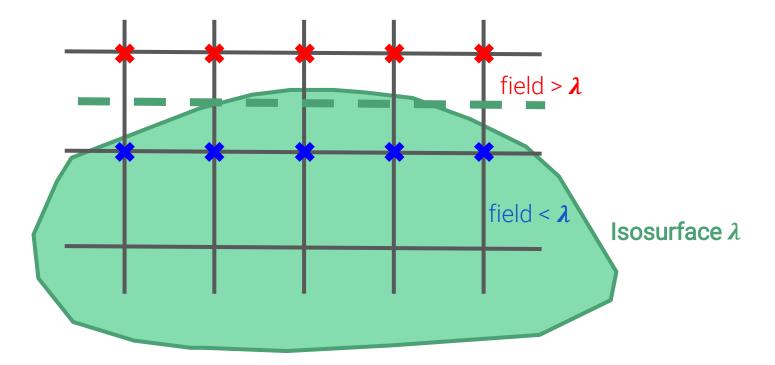
*But 3DGS already provides an explicit 3D point cloud!* Trust me, it's a nightmare to directly sculpt, rig or animate a point cloud. I tried.

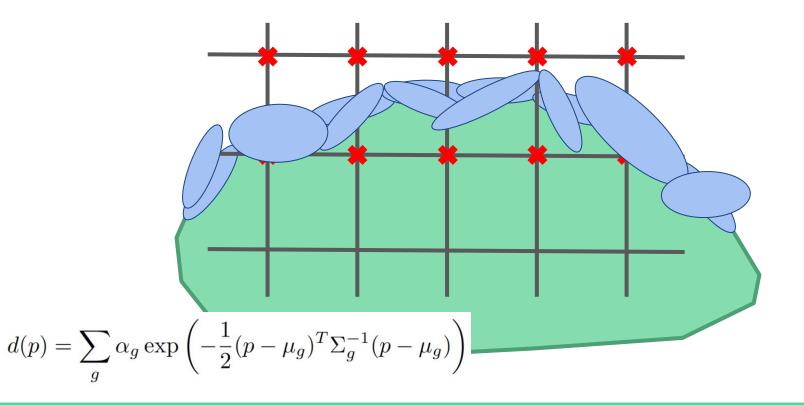

#### Meshes from Radiance Fields

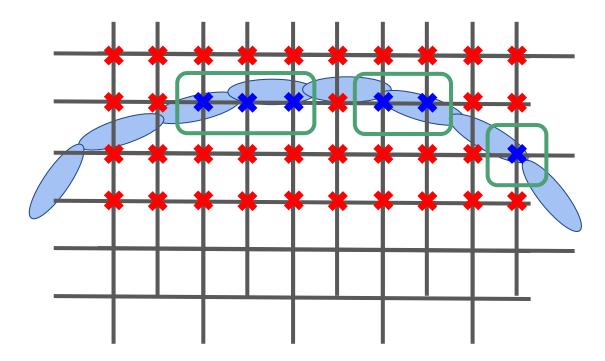
- → NeuS, and Instant-NeuS
- → **BakedSDF** (Yariv., Barron et al., SIGGRAPH 2023)
- → Neuralangelo (CVPR2023) is also a good example, and adapts InstantNGP to the SDF framework
- → Binary Opacity Grids (arXiv 2024)

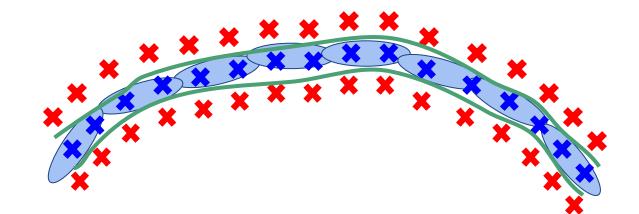
But still, NeRF-based meshing approaches can be very slow (several GPU-hours, even days) or inaccurate.

#### Questions


- 1. Can we leverage Gaussian Splatting to reconstruct triangles meshes?
- 2. Can we use a mesh as an underlying structure for a Gaussian Splatting representation (for easier editing, animation, *etc.*)?





#### Instant-NeuS


SuGaR

## Radiance Field to Mesh: Standard Practice









## From Gaussians to mesh: Quick Overview

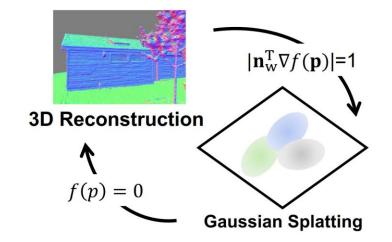
#### Marching Cubes and 3DGS: DreamGaussian

**DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation**, Jiaxiang Tang *et al.* 

The paper adapts *Zero-123* from NeRF to 3D Gaussian Splatting: The goal is to generate 3D content from a single image. Authors use a marching algorithm.



#### Marching Cubes does not work in practice, in real scenes


Only **works with a few thousands** Gaussians (5k). In practice, 3DGS produces **millions** of Gaussians!



#### NeRFs augmented with 3D Gaussians

*NeuSG: Neural Implicit Surface Reconstruction with 3D Gaussian Splatting Guidance*, Chen *at al.*, 2023

- → Jointly optimizing NeuS and 3DGS
- → 3DGS as an additional regularization tool for NeuS
- → Conceptually, very different
- → Less "light-weight" than just using 3DGS (optimization takes 16 hours)



## SuGaR:

Surface-Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering *To appear at CVPR 2024* 

### Antoine Guédon and Vincent Lepetit

Imagine Team LIGM, Ecole des Ponts (ENPC), Univ Gustave Eiffel, CNRS, France



#### SuGaR: Three main contributions

- 1. A regularization term that encourages 3D Gaussians to align with the surface
- 2. A scalable mesh extraction method tailored for 3D Gaussians
- 3. A **refinement method** that **binds** new 3D Gaussians to the triangles of the mesh, resulting in a **hybrid representation**

## Aligning Gaussians with the surface

*Question*: What would the density function look like, in an ideal scenario where Gaussians are well-aligned with the surface?

$$d(p) = \sum_{g} \alpha_g \exp\left(-\frac{1}{2}(p - \mu_g)^T \Sigma_g^{-1}(p - \mu_g)\right)$$

*Question*: What would the density function look like, in an ideal scenario where Gaussians are well-aligned on the surface?

**#1**: Gaussians should have limited overlap, and be well-spread on the surface.

$$d(p) = \alpha_{g^*} \exp\left(-\frac{1}{2}(p - \mu_{g^*})^T \Sigma_{g^*}^{-1}(p - \mu_{g^*})\right)$$

*Question*: What would the density function look like, in an ideal scenario where Gaussians are well-aligned on the surface?

**#2**: Gaussians should be opaque or fully transparent (otherwise, isosurface are meaningless).

$$d(p) = \exp\left(-\frac{1}{2}(p - \mu_{g^*})^T \Sigma_{g^*}^{-1}(p - \mu_{g^*})\right)$$

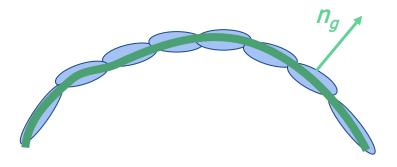
*Question*: What would the density function look like, in an ideal scenario where Gaussians are well-aligned on the surface?

**#3**: Gaussians should be as flat as possible (one of the three scaling factors should be close to zero).

$$\bar{d}(p) = \exp\left(-\frac{1}{2s_{g^*}^2}\langle p - \mu_{g^*}, n_{g^*}\rangle^2\right)$$
  
because  $(p - \mu_g)^T \Sigma_g^{-1} (p - \mu_g) \approx \frac{1}{s_g^2}\langle p - \mu_g, n_g\rangle^2$ 

"Ideal" density: 
$$\bar{d}(p) = \exp\left(-\frac{1}{2s_{g^*}^2}\langle p - \mu_{g^*}, n_{g^*}\rangle^2\right)$$

**Regularization term:** 


$$\mathcal{R} = |d(p) - \bar{d}(p)|$$

where p are points sampled near the centers of the Gaussians, following the Gaussian distributions.

**Goal:** Encourage the density to converge toward the ideal scenario. Enforces Gaussians to align with the surface in a non destructive way.

Additional regularization term for faster alignment:

$$\mathcal{R}_{\text{Norm}} = \frac{1}{|\mathcal{P}|} \sum_{p \in \mathcal{P}} \left\| \frac{\nabla d(p)}{\|\nabla d(p)\|_2} - n_{g^*} \right\|_2^2$$




#### The density loss works pretty well in practice (foreground)



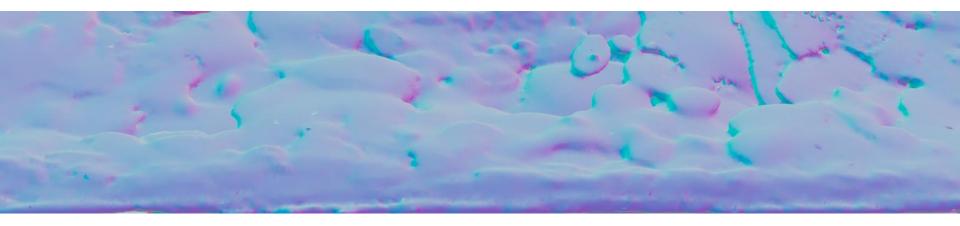
#### For even more regularization: *SDF constraint*

Ideal density:

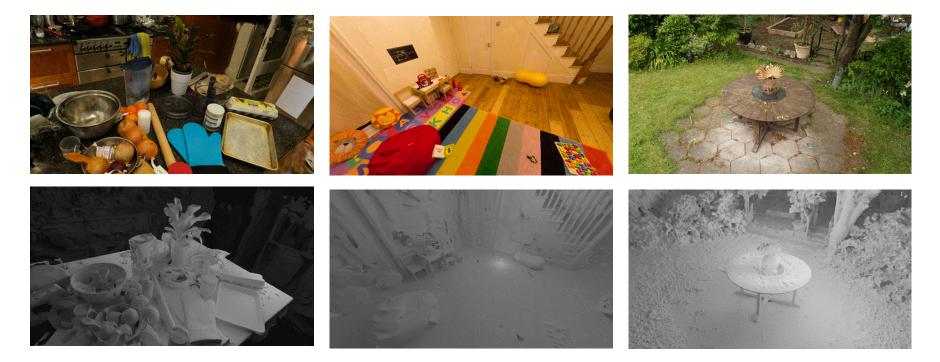
$$\bar{d}(p) = \exp\left(-\frac{1}{2s_{g^*}^2}\langle p - \mu_{g^*}, n_{g^*}\rangle^2\right)$$




Distance between p and the surface:  $|\langle p-\mu_{g^*},n_{g^*}\rangle|$ 

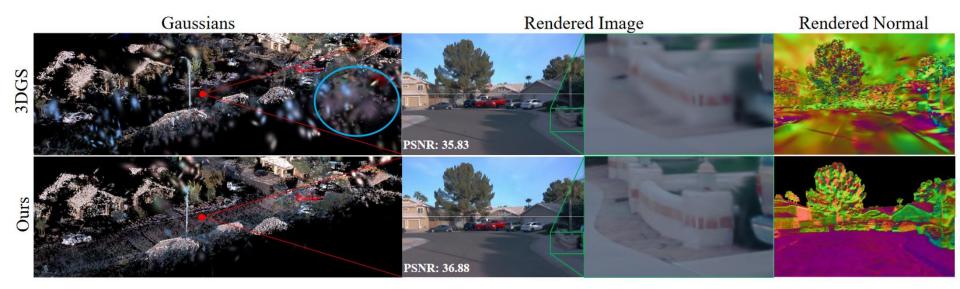

Conclusion: We introduce an "ideal" SDF

$$f(p) = \pm s_{g*} \sqrt{-2\log\left(d(p)\right)}$$


#### Alignment: Example of a plane surface (No regularization)



#### Alignment: Example of a plane surface (With regularization)




#### Alignment in scenes with background geometry



#### Other approaches to align Gaussians with the surface

GaussianPro: 3D Gaussian Splatting with Progressive Propagation, Cheng et al.



## Mesh Extraction

#### Isosurface reconstruction

3DGS uses an **explicit 3D representation**. Why should we use a method tailored for implicit fields, like Marching Cubes?

#### Let's use a point cloud-based method!

**Our choice**: The **Poisson Surface Reconstruction**, which needs **3D points** sampled on the surface of the scene, as well as the corresponding **surface normals**.

Isosurface reconstruction as a Poisson problem

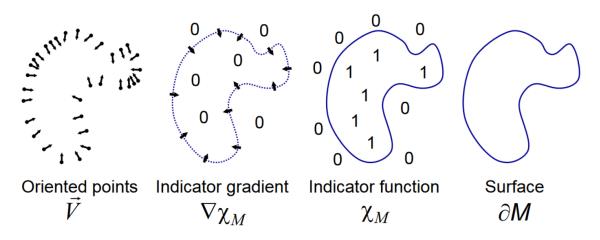
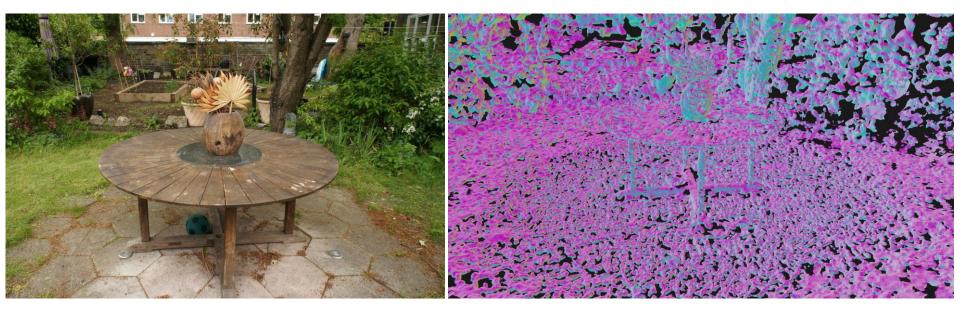
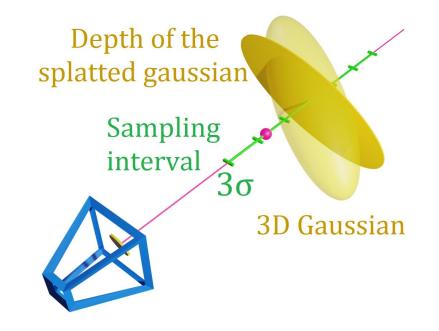




Figure 1: Intuitive illustration of Poisson reconstruction in 2D.

Conceptually, we are looking for **another implicit field**  $\chi$  than the density *d*, that has approximately the same isosurface and normals, but with different boundary values: The field is equal to 1 inside objects, and equal to 0 outside objects. Much better for marching!

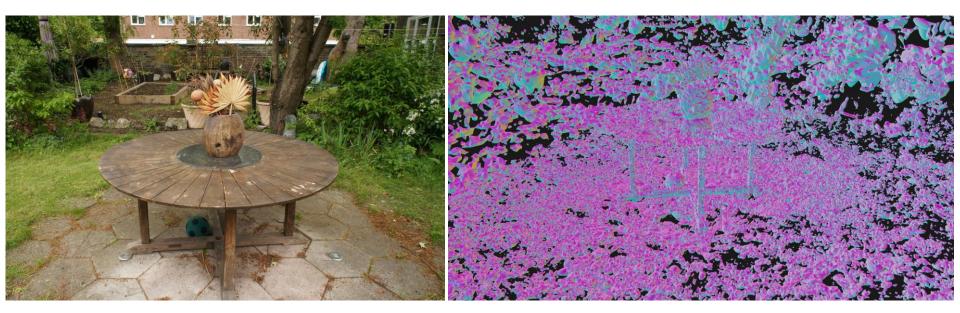
#### Poisson reconstruction on Gaussian centers

The result is full of holes, because Gaussians can be far from their neighbors depending on their size!




#### Sampling points on the surface

- → Using the **centers of the Gaussians** does not work.
- → Sampling points from the Gaussian distributions does not work, even if we target a specific isosurface (we end up with points located *"inside"* the objects).
- → We need to sample points only on the visible parts of the isosurface of the density.


### Sampling points on the surface

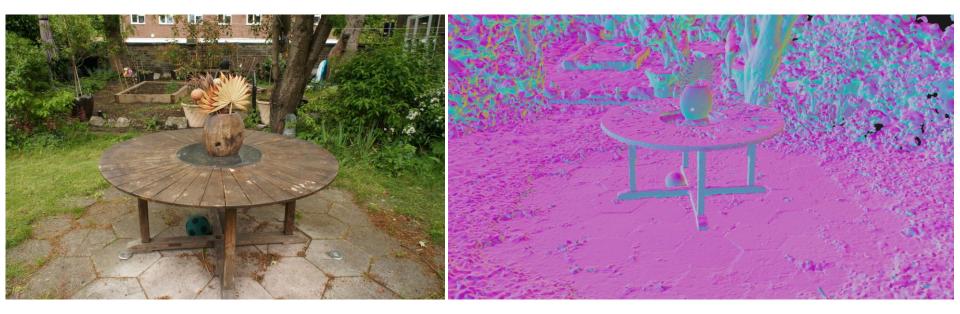
- → We render depth maps from training viewpoints
- → We backproject pixels into 3D points p using the depth map
- → For a *p* sampled from a splatted Gaussian *g*, we look for the closest isosurface point in a range  $3\sigma_g$ (confidence interval for the 99.7 level)
- → We compute the normal at p as the normalized gradient of the density d



### Mesh extraction: comparison

#### Marching Cubes, no regularization (vanilla 3DGS):



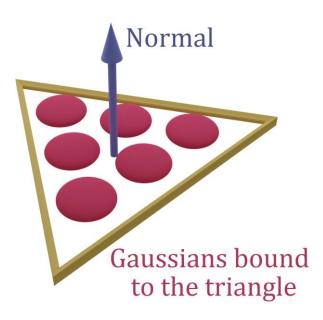

### Mesh extraction: comparison

#### Our extraction method, no regularization (vanilla 3DGS):



### Mesh extraction: comparison

Our extraction method, our regularization




# Hybrid Representation: Mesh + Gaussians

### Binding Gaussians to triangles

We sample **flat Gaussians** in the triangles of the mesh, and change the parameterization of the Gaussians so that they **automatically adjust** when **deforming**, **rotating**, **scaling**, or **animating** the mesh.

- → We use **barycentric coordinates** in the triangles for the means
- → The rotation matrix is written in the coordinate space of the triangle. We only learn a 2D rotation in the triangle's plane, encoded with a complex number x+iy
- → The scaling factor along the normal is very small
- → We automatically adjust rotations and scaling with simple rules when deforming the triangle



# Similar approach

#### Mesh-based Gaussian Splatting for Real-time Large-scale Deformation, Gao et al.

- → This approach considers the mesh as an input, and focuses on parameterizing Gaussians on the surface of the mesh.
- → The parameterization is very similar to SuGaR (each Gaussian is bound to a triangle of the mesh, in a similar way) but authors push it further (more sophisticated)!
- → Their parameterization works well for adapting Gaussians' parameters to large-scale deformations of the mesh.



→ Super interesting!







### Dedicated viewer: Bicycle

| 🗇 < xdej                        | 👌 ubunt     | G The re 🧕     | apt - ] 🛛 🏄 l can't  | 🧿 source     | Ġ check      | 😞 How 🗎     | G E: Una | 🧕 apt - (  | Ġ nodej:      | 👌 node.       | 🕒 npm 🗤                 | (A) How : | Down       | 💗 Why 🗸      | 🛞 Node:        | How :        | • How 1    | 🖓 Adde:            | <b>G</b> Gc × → | + ~       | -       | - o ×                             |
|---------------------------------|-------------|----------------|----------------------|--------------|--------------|-------------|----------|------------|---------------|---------------|-------------------------|-----------|------------|--------------|----------------|--------------|------------|--------------------|-----------------|-----------|---------|-----------------------------------|
| $\leftrightarrow \rightarrow c$ |             | ΟA             | https://www.google.o | com          |              |             |          |            |               |               |                         |           |            |              |                |              |            |                    | *               |           |         | ര ഇ ≡                             |
| - Importer les ma               | arque-p 🌀 ( | Google 😐 YouTu | ube 👎 Facebook 🛅     | LinkedIn     | Accueil / Tw | itter 🔰 JVC | Spotify  | 🐖 Twitch 🚺 | Z Zimbra: Réc | eption (33) 📫 | Slack   general         | IMAGI     | 🚫 WhatsApp | ර් Mes proje | ts - Overleaf, | diagrams     | s.net 🔒 Ar | alytics   Instanta | iné 😨 Anttwo    |           | » 🗅 A   | utres marque-pag <mark>e</mark> s |
|                                 |             | k              |                      |              |              |             |          |            |               |               |                         |           |            |              |                |              |            |                    |                 | Gmail     | Images  | iii 🌚                             |
|                                 |             |                |                      |              |              |             |          |            |               |               |                         |           |            |              |                |              |            |                    |                 |           |         |                                   |
|                                 |             |                |                      |              |              |             |          |            |               |               |                         |           |            |              |                |              |            |                    |                 |           |         |                                   |
|                                 |             |                |                      |              |              |             |          |            |               |               |                         |           |            |              |                |              |            |                    |                 |           |         |                                   |
|                                 |             |                |                      |              |              |             |          |            |               |               |                         |           |            |              |                |              |            |                    |                 |           |         |                                   |
|                                 |             |                |                      |              |              |             |          |            |               |               |                         |           |            |              |                |              |            |                    |                 |           |         |                                   |
|                                 |             |                |                      |              |              |             |          |            | C             |               | $\overline{\mathbf{a}}$ |           |            |              |                |              |            |                    |                 |           |         |                                   |
|                                 |             |                |                      |              |              |             |          |            | C             | 70            | og                      | IE        |            |              |                |              |            |                    |                 |           |         |                                   |
|                                 |             |                |                      |              |              |             |          |            |               |               |                         |           |            |              |                |              |            |                    |                 |           |         |                                   |
|                                 |             |                |                      |              |              |             |          |            |               |               |                         |           |            | 🎐 😨 )        |                |              |            |                    |                 |           |         |                                   |
|                                 |             |                |                      |              |              |             |          |            | Peche         | rche Google   | l'ai de                 | la chance | 5          |              |                |              |            |                    |                 |           |         |                                   |
|                                 |             |                |                      |              |              |             |          |            | Recile        | inthe Google  | Jaiue                   | ia chance |            |              |                |              |            |                    |                 |           |         |                                   |
|                                 |             |                |                      |              |              |             |          |            |               |               |                         |           |            |              |                |              |            |                    |                 |           |         |                                   |
|                                 |             |                |                      |              |              |             |          |            |               |               |                         |           |            |              |                |              |            |                    |                 |           |         |                                   |
|                                 |             |                |                      |              |              |             |          |            |               |               |                         |           |            |              |                |              |            |                    |                 |           |         |                                   |
|                                 |             |                |                      |              |              |             |          |            |               |               |                         |           |            |              |                |              |            |                    |                 |           |         |                                   |
|                                 |             |                |                      |              |              |             |          |            |               |               |                         |           |            |              |                |              |            |                    |                 |           |         |                                   |
|                                 |             |                |                      |              |              |             |          |            |               |               |                         |           |            |              |                |              |            |                    |                 |           |         |                                   |
|                                 |             |                |                      |              |              |             |          |            |               |               |                         |           |            |              |                |              |            |                    |                 |           |         |                                   |
| France                          |             |                |                      |              |              |             |          |            |               |               |                         |           |            |              |                |              |            |                    |                 |           |         |                                   |
|                                 | Dubliaitá   | Entropyloo     | Commont fonctions    | no la rechor | reho Coogle  |             |          | Nietro     | troloiàma dá  | connio dicett |                         | ant       |            | Cianala      | sun contonu    | Ingenerantiá | Info or    |                    | Confidenti      | alitá Can | ditions | Daramètras                        |
| À propos                        | Publicité   | Entreprise     | Comment fonctionr    | ne la recher | rche Google  |             |          | Notre      | troisieme dé  | cennie d'acti | on pour le clim         | at        |            | Signaler     | run contenu    | inapproprie  | into co    | onsommateur        | s Confidenti    | ante Con  | ditions | Paramètres                        |

### Dedicated viewer: Playroom

| 💼 < ym 🗤 (A) How I 🌒 Down: 🤎 Why V 404 Not Fi 🐘 How I 🗣 How I 🗭 Addes: 🎯 Googi 💩 demic 🛄 Try thi 🔍 What 📿 Antitiv                                     | ow c 🧕 source 404 Not Fi 🌘 Index 🔌 node, 🔌 how c 🕞 Googl 🚳 Sur X > + 🗸 — CI X                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| $\leftrightarrow \rightarrow \mathbf{C}$ O D localhost:5173                                                                                           | ×4 ☆ ♡ () 1 ≡                                                                                                      |
| 🕣 Importer les marque-p 🎯 Google 🧧 YouTube 🥳 Facebook 🚡 Linkedln 🗙 Accueil / Twitter 🔰 IVC 💿 Spotify 뿌 Twitch Z Zimbra: Réception (33) 🌞 Slack   gene | 51 😡 WhatsApp 🧷 Mes projets - Overleaf, 🔣 diagrams.net 🕼 Analytics   Instantané 😨 Anttwo 🛛 🔅 🗅 Autres marque-pages |
| SuGaR – Viewer<br>Surface-Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High-Quality                                            | sh Rendering Hybrid Textured Wireframe                                                                             |



Built by Antoine Guédon with Vite and Three.js; Huge thanks to Mark Kellogg for his 3D Gaussian Splatting implementation for Javascript.

### Dedicated viewer: Kitchen

| 🗇 🕻 xdej 📓 ubunt           | 🜀 The re 🛛 🧕       | apt-1 👗 I can'i 🤇      | source G       | check 🔵 How             | G E: Una  | 🤷 apt - (    | 🌀 nodej 🛛 🛓      | node 🤅 🥝       | npm (A) Ho            | wit 🔹 Down | 💗 Why V       | 🕙 Node: 🖷       | Howt        | How 1 🗘 Adde:             | Ġ Gc × > -      | + ~          | - o ×               |
|----------------------------|--------------------|------------------------|----------------|-------------------------|-----------|--------------|------------------|----------------|-----------------------|------------|---------------|-----------------|-------------|---------------------------|-----------------|--------------|---------------------|
| $\leftarrow \rightarrow C$ | 08                 | https://www.google.cor | n              |                         |           |              |                  |                |                       |            |               |                 |             |                           | *               | ତ            | ) (A) £) ≡          |
| - Importer les marque-p    | G Google 🛛 😐 YouTi | ube 👍 Facebook 🛅 Lir   | nkedin 🐰 Acc   | cueil / Twitter 🛛 🔰 JVC | 🔵 Spotify | 🖳 Twitch 🛛 🛛 | Zimbra: Réceptio | on (33)  🍀 Sla | ick   general   IMAGI | 🚫 WhatsApp | ් Mes projets | s - Overleaf, 🚦 | diagrams.ne | t 🔒 Analytics   Instantan | é 😱 Anttwo      | » D          | Autres marque-pages |
|                            |                    |                        |                |                         |           |              |                  |                |                       |            |               |                 |             |                           |                 | Gmail Image  | s III 🌚             |
|                            |                    |                        |                |                         |           |              | G                | 00             | ogle                  | 2          |               |                 |             |                           |                 |              |                     |
|                            |                    |                        |                |                         |           |              |                  |                |                       |            | 🎍 🙃 🔪         |                 |             |                           |                 |              |                     |
|                            |                    |                        |                |                         |           |              | Recherche        | e Google       | J'ai de la cha        | nce        |               |                 |             |                           |                 |              |                     |
|                            |                    |                        |                |                         |           |              |                  |                |                       |            |               |                 |             |                           |                 |              |                     |
| France                     |                    |                        |                |                         |           |              |                  |                |                       |            |               |                 |             |                           |                 |              |                     |
| À propos Publicité         | Entreprise         | Comment fonctionne     | la recherche ( | Google ?                | k         | Notre tr     | roisième décenr  | nie d'action p | oour le climat        |            | Signaler      | un contenu in   | approprié   | Info consommateurs        | Confidentialite | é Conditions | Paramètres          |

# Composition









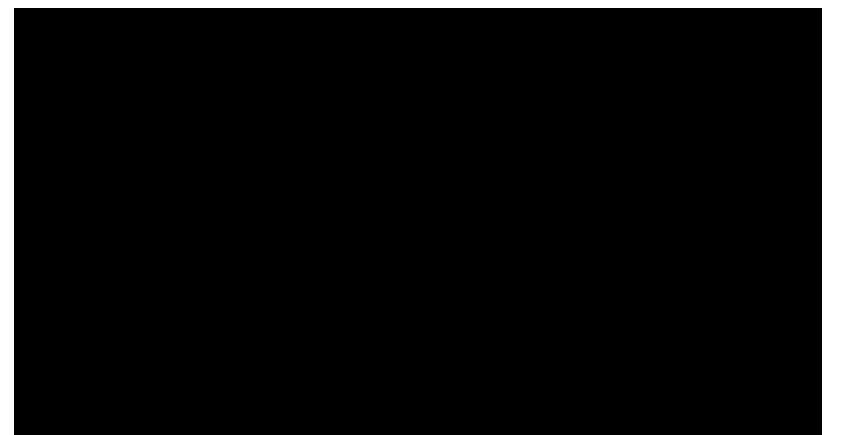
# Composition

### Composition + Animation



Mesh + Gaussians

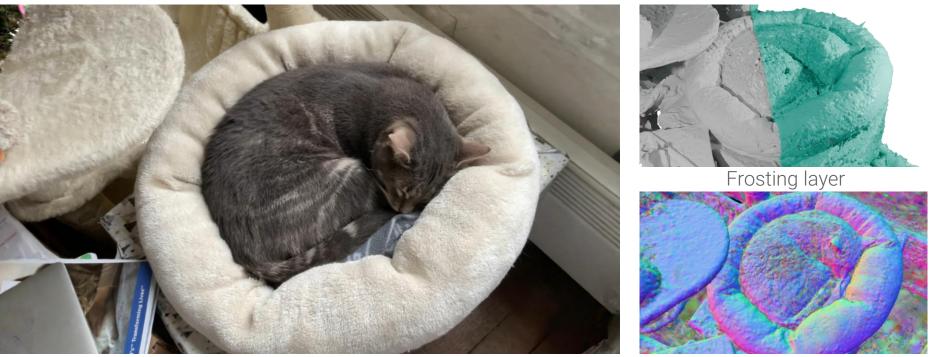
for the mesh


### Composition + Animation



Mesh + Gaussians

for the mesh


# Composition + Animation



### Limitations

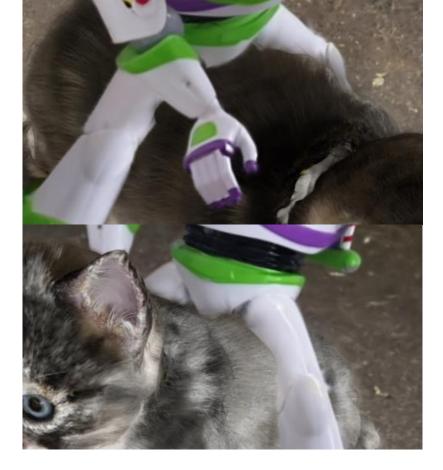
- → Gaussians "cheat" on the geometry to recreate specularity. SuGaR's regularization mitigates this issue, but highly specular surfaces can still generate bumps or cavities in the mesh.
- → SuGaR reaches lower rendering performance than vanilla 3DGS. Indeed, when reconstructing the world as a surface, it becomes much harder to recover volumetric effects and fuzzy materials, like hair or grass.

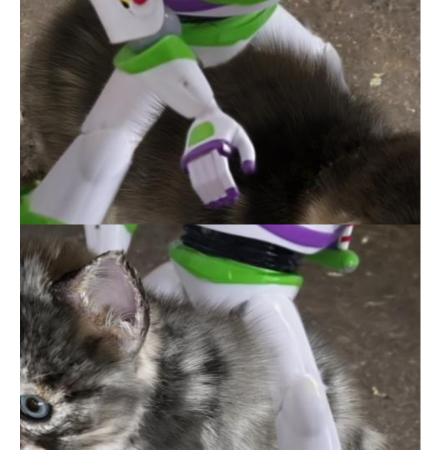
# Gaussian Frosting



Rendering

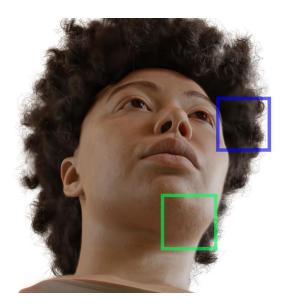
Normals

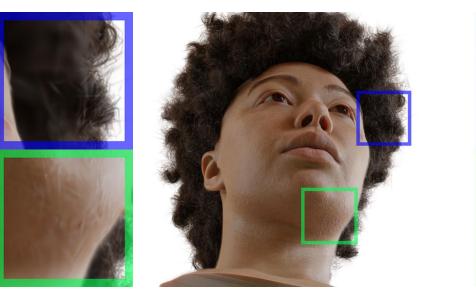









#### Frosting

SuGaR







Frosting

3DGS

SuGaR's code is available here: https://github.com/Anttwo/SuGaR

If you like the project, please consider leaving a star! We will update the repo very soon with some big changes!

### Thank you so much! Here's my cat for conclusion:

|                                         |                          |                 |                           | 90000 C         | n cars           |                         |                     | 100          |                    |                    |               |                      |          |                     |
|-----------------------------------------|--------------------------|-----------------|---------------------------|-----------------|------------------|-------------------------|---------------------|--------------|--------------------|--------------------|---------------|----------------------|----------|---------------------|
| 🗇 🤇 IUSS ECCV 2024 🔌 I                  | bash - 🐨 Bounc 🔷 Simul   | Plates          | Poisse 🏹 Zimbr            | G opaqı. 🦉      | 🔊 Nikos 🛛 🌂 [230 | 14. 🐴 SuGali I 🧕        | 2311.1 🛄 Mikr       | re 🛄 CVPR    | CCV C              | lmagii 📃 Tutori    | ECCV 2024     | 💊 Nouve 🔊 S          |          | ~ - o ×             |
| $\leftarrow \ \rightarrow \ \mathbf{G}$ | O D localhost:5173       |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      | 茶 ☆      | ⊠ A ් ≡             |
| 🕀 Importer les marque-p 🜀 Goog          | ile 🧧 YouTube 🧃 Facebook | 🖬 LinkedIn  🕅 A | Accueil / Twitter 🛛 🔰 JV( | : 💿 Spotify 🔑   | Twitch 🔀 Zimbra: | Réception (33) 🛛 💠 Slac | k   general   IMAGI | . 🚫 WhatsApp | ර් Mes projets - C | )verleaf, 🚹 diagra | ims.net 🔒 Ani | alytics   Instantané | Anttwo   | Autres marque-pages |
| SuGa                                    | R - Viewe                | ۲               |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         | ned Gaussian Sp          |                 | Efficient 3D I            | Vesh Reco       | onstruction      | and High-Ou             | uality Mesl         | h Render     | ina                |                    |               | Hybrid               | Textured | Wireframe           |
|                                         | , rea cadoolar op        | latting for i   |                           |                 |                  | ana ngira               |                     |              |                    |                    |               | riyona               | Textured | Wilename            |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               | k                    |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  | Downloadin              | g: 69.31%           |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          |                 |                           |                 |                  |                         |                     |              |                    |                    |               |                      |          |                     |
|                                         |                          | Built           | by Antoine Guédo          | n with Vite and | d Three.js; Huge | thanks to Mark Ke       | llogg for his 3     | D Gaussian S | platting implem    | entation for Java  | ascript.      |                      |          |                     |