3D Gaussian Splatting

Splatting in Practice
Bernhard Kerbl

oy s

e BT ey ,.ﬁ_},_:;_{;_&_:s.bi_-‘.',_g_ T c'.'::.._. ot

r

lrreia—~

3DGS in Practice — Overview
1. Running the GraphDeco code

2. 3DGS Everywhere Else

3. 3DGS Rendering with Graphics Pipelines

4. Reducing the Size of 3DGS Models

18.03.2024 3D Gaussian Splatting

il

Your host for today

Current System (Laptop)

* Let’s try the repo instructions -2
https://github.com/graphdeco-inria/gaussian-splatting

* Windows 11

CUDA 11.7

Conda 4.9.2

* Microsoft Visual Studio 2019

18.03.2024 3D Gaussian Splatting

3D Gaussian Splatting for Real-Time Radiance Field
Rendering

Bernhard Kerbl*, Georgios Kopanas*, Thomas Leimkiihler, George Drettakis (* indicates equal contribution)
| Webpage | Full Paper I\/IdEO | Other GRAPHDECO Publications | FUNGRAPH plOJECt p1ge |

Plenoxels (8.2 fps)

DS s)
Train: 7min, PSNR: 22.1 rain: 26min, PSNR: 21.9 Train: 48h, PSNR: 24.3

This repository contains the official authors implementation associated with the paper “3D Gaussian Splatting for
Real-Time Radiance Field Rendering"”, which can be found here. We further provide the reference images used to
create the error metrics reported in the paper, as well as recently created, pre-trained models.

: zia UNIVERSITE :
i IJ | I ot
B Grophoeco

https://github.com/graphdeco-inria/gaussian-splatting

m loveden—
k-

Prologue to the Release

* We were not the first to release code for our own paper(!)

* https://github.com/wanmeihuali/taichi 3d gaussian splatting

* Prototype based on preprint, uses Taichi Lang for implementation

 Same method, entirely different design, clearly a clean-room feat

18.03.2024 3D Gaussian Splatting

https://github.com/wanmeihuali/taichi_3d_gaussian_splatting

Running the GraphDeco Code

3D Gaussian Splatting Ecosystem

* GraphDeco repository contains o
1. Input Datasets i
2. Pytorch scripts (Python) el
3. Submodules (C++/CUDA) — recursive!

* Extensions for training utls
* SIBR Viewers (optional) |

* Run training: python train.py -s <path to COLMAP dataset>

* Generates trained model in custom .ply format

(Remote) Training Client

* Thin client: train.py renders current state, transfers image
* TCP/IP protocol, remote possible
e Server/host can define IP/Port for connection

* Build source or use pre-built SIBR _remoteGaussian_ app.exe

e Several scenarios possible, just run the executable if local

Menu Views Capture

¥ Point view

- T 7 W ¥ " . _— & o_"il:
¥ Mode Load camera Save camera (bin) p
-é;nap_todc_lo_s:s‘t 73- - - 7+ Sm;xp- t;od . it % .
L S 50.513199 = % Fov Y 0,009000 = # Near 1186.0888888 - + Far _
Key cameras: 6 add key Save key cameras... I
VPlag Play (No Interp) Record ‘Stop 1.00680080 - o+ Speed I
Load path Save path :
Save video (from playing) Save frames (from playing) -
Acceleration 0.30@006 = + Speed 1,080808 - + Rot. speed il
L : NP
AT R £ — = e
e ——— l > j

python tramn.py -

Loading Training Cameras [09/07 18:33:59]
Loading Test Cameras [09/07 18:34:09]
Number of points at initialisation : 136029 [09/07 18:34:09]
Training progress: 0%| | /30000 [00:00<?, ?it/s]
Connected by ('127.0.0.1"', 56832) [09/07 18:34:09]

Training progress: 16%|_ | 4720/30000 [03:07<16:49, 25.03it/s, Loss=0.0658754]
Connected by ('127.0.0.1"', 56841) [09/07 18:37:16]

Training progress: 18%|_ | 5360/30000 [03:51<25:08, 16.33it/s, Loss=0.0748449]

¥ Metrics

16.67

M leeia
ot

Unexpected Difficulties

“cl.exe not found”
* Try without the suggested SET DISTUTILS USE SDK=1, or put MSVC on the Path

“Illegal memory access” Error
* Appears to occur preferably on RTX 40xx or Ubuntu
@ An error occurred.

[QK Cancel

No multi-GPU support

* We simply didn’t have multi-GPU workstations to develop/test on

No direct batch training support
* But possible manually, simply backward multiple times before step

r

lrezia—

Real-Time Gaussian Viewer

» Standalone renderer, uses CUDA + OpenGL Interop (if it can)
* Reads .ply files generated by train. py

e Several convenience features
* Visualize Gaussians as ellipsoids
* Crop scene to region of interest
e Display ground truth image with each camera

FPS ¥ Mode Load camera Save camera (bin) !

47.136211 = + Fov Y 0,010000 = + Near 1660.888888 - + '.

- ,"'"' Snap to closest 185 = + Snap to

' G- i+ Key cameras: 8 add key Save key cameras...

1 ﬂ{:g Play Play (No Interp) Record Stop 1.608880 = |+ Speed i“'
P _ ~ Load path Save path 3

3 ‘;' Save video (from playing) Save frames (from playing)

{g Acceleration ©,300000 - + Speed 1.0080088 - 4+ Rot. spe

31,47 (31.78 ms) ¢
N N y :

Splats ¥ Render Mode g
1.000 B scaling Modifier

*

»~

Rendering & Evaluation
* render. py for producing renderings of training / test set
* metrics.py for running relevant error metrics on renderings

 full eval.py to replicate the paper’s full quantitative evaluation

* Includes training, rendering and metrics computation
* At current state, takes about 6 — 8 hours on an RTX 3090

GraphDeco 3DGS Roadmap (Engineer)

Menu VYiews Capture

¥ Point view
¥ Top view

* Improved TopView

Y Top view settings

» oOptionsSceneDebugView
» Meshes list

» Cameras

et

* Improved TopView

* On-demand
Images Overlay

18.03.2024

Menu Yie
¥ Point

3D Gaussian Splatting

¥ Top view settings

» OptionsSceneDebugView

» Mesh is

Y Camera Point view

Play (Mo Interp)
Load path

\

Mode

AlEi

Record

Load camera Save camera (bin)
tude interp 42
0, 010000 =

key cameras. ..

14

m Creda—
GraphDeco 3DGS Roadmap (Engineer)

* Improved TopView

* On-demand
Images Overlay

* Altitude Interpolation and Locking

18.03.2024 3D Gaussian Splatting

15

m Creda—
GraphDeco 3DGS Roadmap (Engineer)

* Improved TopView

* On-demand
Images Overlay

* Altitude Interpolation and Locking

* VR support via OpenXR

18.03.2024 3D Gaussian Splatting

16

3DGS Everywhere Else

Janusch Patas Jonathan Stephens Radiance Fields
@janusch_patas @jonstephens85 @RadianceFields

https://github.com/MrNeRF/awesome-3D-gaussian-splatting (curated list of publications)

https://radiancefields.com (news related to radiance fields)

18.03.2024 3D Gaussian Splatting 18

https://github.com/MrNeRF/awesome-3D-gaussian-splatting
https://radiancefields.com/

M&Imx’a’-
-4

3DGS Adaptations (not exhaustive!)

@ (Thanks to Aras Pranckevicius)

https://gsplat_tech (Thanks to Jakub Cerveny)

<4 LUMA Al

. i ne r‘fst u d LO @ (E.g., through Luma Al Plugin)

M /e Copyright © 2024 Luma Al, Inc.

-
Luma

* Interactive 3DGS Scenes

. *+ New Interactive Scenes
* App + Web Viewer

Capture with Luma and share in lifelike
interactive 3D, anywhere and with everyone.

Featured Scenes

* Unreal Engine 5 plugin

gsplat.tech

gsplat — 3D Gaussian Splatting WebGL viewer

Users' Models

]

Y £

1930 Ford 45.0 MB Excavator 82.7 MB 420 Purize(c) Trabant 62.8 MB Nike Next 12.0 MB
by Manuel Allinger by Manuel Allinger by Manuel Allinger by Alex Carlier

18.03 Copyright © 2023 Jakub Cerveny b coussian spiating 21

3DGS with Graphics Pipelines

m leia— s
3D Gaussian Splatting & Alpha Blending

e Recap: Compositing Gaussians is a special variant of alpha blending

l

I(x) = Z a;(x)c; 1_[1—-ai(x), a=0G(x), Gx)= o—05Cx—wTE" ™ (x—p)
J
* Alpha blending is readily available in fixed-function triangle pipelines

* We can convert Gaussian Splatting to triangle rasterization

m lreda—
3D Gaussian Splatting & Alpha Blending

[
I(x) = z a;(x)c; 1_[1—a;(x), a=06Gkx), Gkx)= o—05C—wTE" ™ (x—p)
j

i

1. Vertex Shader 2. Geometry Shader 3. Fragment Shader 4. Blending

ll' ‘: ; $
o (c, a)

18.03.2024 3D Gaussian Splatting 24

a0+ (1 — ay)a,

ﬁggaawa, s
3D Gaussian Splatting & Alpha Blending

l

I(x) = 2 a;(x)c; 1_[1—-ai(x), a=o0Gx), G(x) = o—05C—wTE" ™ (x—p)
J
a0+ (1 — a1)a,0

<clear to background RGB, ©>
glBlendFunc (ONE_MINUS DST ALPHA, ONE)

ﬁggaawa, s
3D Gaussian Splatting & Alpha Blending

RGB output of pixel shader pre-multiplied with alpha

a0+ (1 — ay)a,

<clear to background RGB, 0>
glBlendFunc(ONE_MINUS DST ALPHA, ONE)

A1 =0,¢,=(1-0)a,O0+ N
Ay =ay,6=1 —apa,0+ o, O

1-— An+1 — (1 — an)(l — An) =1 — (an(l — A’n) + A’n) @

Sorting Gaussians

* Pipeline ensures “primitive order” of vertex indices
* But that order must be established first!

e Requires sorting of Gaussians for the current view
 Millions of Gaussians: not hard, but also not trivial e e e e o onf2.2)
» Sort on GPU: fast, requires compute shader support
* Sort on CPU: slower (adds index transfer), incremental or periodic?

https://creativecommons.org/licenses/by-sa/2.5/

Reducing the Size of 3DGS

m lreeia— DV |
Reducing the Size of 3DGS Scenes
* |s 3DGS a solution for fast, portable 3D viewing?
* Training speed . Rendering speed .. Download speed X

* Generated .ply range from a few dozen MiB to more than one GiB

* Smaller than Plenoxels volumes, but much bigger than NeRF scenes

TV R DV
Analyzing the Storage Cost of a 3DGS Scene

* 59 x 4 bytes to represent a single Gaussian

 Millions of them!

v

PxIPylP: | arlqilq;]ak

sxlsylsz a rlg|b

shg|shy _
Shyz|shy,

Transforms Point Cloud

VI DV
Blog Posts by Aras Pranckevicius

Game Engine-oriented: reordering, texture encoding and palettes
1. https://aras-p.info/blog/2023/09/13/Making-Gaussian-Splats-smaller/ (X12+)
2. https://aras-p.info/blog/2023/09/27/Making-Gaussian-Splats-more-smaller/

© Aras PranckevicCius

https://aras-p.info/blog/2023/09/13/Making-Gaussian-Splats-smaller/
https://aras-p.info/blog/2023/09/27/Making-Gaussian-Splats-more-smaller/

m &Iyz{a/—
|
Overview of Research on 3DGS Compression
* Some of the following papers are preprints

* Depending on the targeted venues, reviewing may be double-blind

* We thus omit author names for papers pending a final accept

m é&u’a,-
Compact3D (arXiv preprint)
* Consider Gaussians as a conglomerate of d-dimensional attributes

* Use k-means to learn a quantized codebook per attribute vector
1. Start with k cluster means per attribute

O

Store non-quantized attributes
Quantize by snapping to closest d-dimensional mean O ®
Differentiably render 3D Gaussians @

Gradients for non-quantized attributes via straight-through estimator (STE)
Update cluster positions, repeat

B N o~ W

lrezia—

EAGLES (arXiv preprint)

1. Uses quantized latent integer vector q € Z' for rotation, opacity, and SHs

2. MLPs to decode each q into attributes for rendering

3. Also employs STE to learn with quantization

4. Various training improvements

* Progressive coarse-to-fine training
* Tweak densification interval/threshold to maximize quality/Gaussian

m leeia
ot

LightGaussian (arXiv preprint)

MHW -\

1. Prune Gaussians: compute a significance score Gs; = Y 1L(G(X;),7:) a; - ¥())
i=1
Volume, avoid excessive focus _/‘
on large background Gaussians

2. Avoid high storage usage of last SH band o
 Teacher-student distillation by optimizing Laixin = it > || Cleacher (i) — Clsudent (1215
» Use pseudo views for better coverage =1

3. Compress per-Gaussian attributes
* Encode positions losslessly with G-PCC (octree)
e Optimize codebooks via k-means, weight Gaussians with scores from 1.

m leela— ‘
Compact 3D Gaussian Representation
for Radiance Field (CVPR ‘24)

1. Learned masking parameter for binary masks via STE

2. Multiple stages of residual codebooks to fit Gaussian attributes

3. Hashgrids + MLP to represent view-dependent colors

M lreia

Compact 3D Gaussian Representation
for Radiance Field (CVPR ‘24)

N Positions

Hash Grids
View Direction
E> Tiny MLP Project &
i Rasterize
Slight distortion Color
N Gaussians Masked Gaussians R-VQ for Scale and Rotation View-dependent Color

18.03.2024 3D Gaussian Splatting 37

M leeia
ot

Compact 3D Gaussian Representation
for Radiance Field (CVPR ‘24)

- Residuals
: | al Al /\2 i
Scale Sn /’ S‘}L ; : Sn - Sn ’,/,’ Sn Sn i
. —» i . — + - ’

N N I T}, [TTT1 [T S

3 - A i | a1 B A 5
Rotation 73, ™ fil a1 Th =T iy fir | N A
Snth | S SnTn

Input Stage 1 Stage 2 Stage L

m leela— ‘
Compressed 3D Gaussian Splatting for
Accelerated Novel View Synthesis (CVPR ‘24)

* Minimize Entropy and Treat Data

* Addresses ambiguity of covariance representation
* Factors out scalar scaling factor to minimize entropy 4

* Sort by Morton order, run-length encode and deflate

* Graphics pipeline rendering for improved speed s R

| Ty R« i3
i dc:%pregééﬂ ours)
117" 2675 PSNR.

m leela— ‘
Reducing the Memory Footprint of
3D Gaussian Splatting (13D '24)

1. Pruning based on coverage of 3D regions and discernible detail

2. Includes variable SH assignment and distillation

3. K-means cluster properties + Codebook + Quantization (16-bit)

4. Evaluation against concurrent work, mobile prototype

TV v,

Revised Training for Compact 3DGS Scenes

, _ Compute =mr Rotation
G Redundancy S84 -a0000-0—0-00
SRS 4\ X X

Scaling
X X
Opacity

X X
Color + SH
———-oocmooo—

X X
3. Codebook (after)

1. Pruning (start-to-end) 2. SH Assignment (halfway)

-0.14db / 8.0x%

+0.03db / 2.37x -0.21db / 27.4x%

Reducing the Memory Footprint
of 3D Gaussian Splatting

submission n°1

Which Method to Pick? Synergies?

Dataset Mip-NeRF360 Deep Blending
Method/Metric SSIM PSNR LPIPS Train Mem | SSIM PSNR LPIPS Train Mem
Red”;g‘ftmfnﬁ";m“y { Ours 0.809 27.10 0.226 25m27s [29MB | 0.902 29.63 0249 22mds | 18MB
3D Gaussian Splatting Low 0.811 27.22 0224 25m22s 46MB | 0.903 29.74 0248 21m59s 35MB
EAGLES [15] 0.808 27.16 0.238 19m57s 68MB | 0.910 29.91 0245 17m24s 62MB
Compact3DGS [19] | 0.798 27.08 0.247 33mé6s 48MB | 0.901 29.79 0.258 27m33s 43MB
Compact3D [24] 0.808 27.16 0.228 - - 10903 2975 0.247 - -
Dataset Mip-NeRF360 No Hidden Tanks&Temples
Method/Metric SSIM PSNR LPIPS Train Mem | SSIM PSNR LPIPS Train Mem
Red“‘;‘”g the “"efm°fv { Ours 0.864 2858 0.193 26m0s 27MB | 0.840 2357 0.188 14m0s | 14MB
30 Govesion Sanating Low 0.866 2873 0.190 25m52s 43MB | 0.841 2364 0.186 14mds 21MB
EAGLES [15] 0.866 28.69 0.200 20mi18s 67MB | 0.835 23.41 0200 9m48s 34MB
Compact3DGS [19] | 0.856 28.60 0.209 33mls 46MB | 0.832 2331 0.202 18m19s 39MB
Compact3D [24] - - - - - | 0.840 2347 0.188 - -
LightGaussian [13] | 0.858 28.46 0.210 - 42MB | 0.807 22.83 0.242 - 22MB

18.03.2024 3D Gaussian Splatting

m lroeia— DV |
Looking for New Challenges
* Next 6 months: joining the Human Sensing Lab at Carnegie Mellon
* Looking for faculty positions for the time after

* Glad to hear about opportunities, preferably in Europe!

* Or just chat about 3DGS and potential follow-ups ©

Questions?

Immer her damit

18.03.2024

3D Gaussian Splatting

47

	Default Section
	Folie 1: 3D Gaussian Splatting
	Folie 2: 3DGS in Practice – Overview
	Folie 3: Current System (Laptop)
	Folie 4: Prologue to the Release
	Folie 5: Running the GraphDeco Code
	Folie 6: 3D Gaussian Splatting Ecosystem
	Folie 7: (Remote) Training Client
	Folie 8
	Folie 9: Unexpected Difficulties
	Folie 10: Real-Time Gaussian Viewer
	Folie 11
	Folie 12: Rendering & Evaluation
	Folie 13: GraphDeco 3DGS Roadmap (Engineer)
	Folie 14: GraphDeco 3DGS Roadmap (Engineer)
	Folie 15: GraphDeco 3DGS Roadmap (Engineer)
	Folie 16: GraphDeco 3DGS Roadmap (Engineer)
	Folie 17: 3DGS Everywhere Else
	Folie 18: Keeping Track of the 3DGS Space
	Folie 19: 3DGS Adaptations (not exhaustive!)
	Folie 20: Luma
	Folie 21: gsplat.tech
	Folie 22: 3DGS with Graphics Pipelines
	Folie 23: 3D Gaussian Splatting & Alpha Blending
	Folie 24: 3D Gaussian Splatting & Alpha Blending
	Folie 25: 3D Gaussian Splatting & Alpha Blending
	Folie 26: 3D Gaussian Splatting & Alpha Blending
	Folie 27: Sorting Gaussians
	Folie 28: Reducing the Size of 3DGS
	Folie 29: Reducing the Size of 3DGS Scenes
	Folie 30: Analyzing the Storage Cost of a 3DGS Scene
	Folie 31: Blog Posts by Aras Pranckevičius
	Folie 32: Overview of Research on 3DGS Compression
	Folie 33: Compact3D (arXiv preprint)
	Folie 34: EAGLES (arXiv preprint)
	Folie 35: LightGaussian (arXiv preprint)
	Folie 36: Compact 3D Gaussian Representation for Radiance Field (CVPR ‘24)
	Folie 37: Compact 3D Gaussian Representation for Radiance Field (CVPR ‘24)
	Folie 38: Compact 3D Gaussian Representation for Radiance Field (CVPR ‘24)
	Folie 39: Compressed 3D Gaussian Splatting for Accelerated Novel View Synthesis (CVPR ‘24)
	Folie 40
	Folie 41: Reducing the Memory Footprint of 3D Gaussian Splatting (I3D ’24)
	Folie 43: Revised Training for Compact 3DGS Scenes
	Folie 44
	Folie 45: Which Method to Pick? Synergies?
	Folie 46: Looking for New Challenges
	Folie 47: Questions?

