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Reconstructing the 3D world
from images + videos.
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Reconstructing the 3D world
from images + videos.

Screen Capture from “RealityCapture”
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Reconstructing the 3D world
from images + videos.

1. Exploration
     (Re-render from Novel Views)

“3D Gaussian Splatting for Real-Time Radiance Field Rendering”



Motivation

Reconstructing the 3D world
from images + videos.

1. Exploration
     (Re-render from Novel Views)
2. Understanding
     (3D Tracking, 3D Video editing etc)
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“Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis.”



Motivation

Ideal 3D Representations:
1. Accurate
2. Fast
3. Memory Efficient
4. Practical: easy to integrate in frameworks 
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Gaussian Splatting:
1. Comparable PSNR with MipNeRF360.
2. 100+ Frames per Second and trains in less than 1h.
3. Renders on Mobile Devices ( < 6GB VRAM).
4. Many implementations on different Graphics frameworks.

a. Format: easy to standardize (.ply files).
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Related Work



Related Work
Mesh-Based Representations

o Estimate Geometry with Multi-View Stereo
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https://blog.prusa3d.com/wp-content/uploads/2018/03/epipolar_geometry.jpg
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Related Work
Mesh-Based Representations

o Estimate Geometry with Multi-View Stereo
o Fixing errors in a triangle mesh – Very Challenging
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Colmap Reconstruction - MVS



o Estimate Geometry with Multi-View Stereo
o Fixing errors in a triangle mesh – Very Challenging
o Fixing them by learning to ignore them:

o Deep Blending [Hedman 2018]
o Stable View Synthesis [Riegler 2020]
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Colmap Reconstruction - MVS

Related Work
Mesh-Based Representations



15Deep Blending [Hedman 2018] - Museum

Related Work
Mesh-Based Representations



16Deep Blending [Hedman 2018] – Concave Bowl

Related Work
Mesh-Based Representations
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Related Work
Neural Radiance Fields

σ rgbxyz θφ

MLP
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Related Work
Neural Radiance Fields
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MLP



19

Related Work
Neural Radiance Fields

Plenoxels [Fridovich-Keil and Yu 2022]

NeRF suffers from slow training and rendering
o DVGO [Sun 2022]
o Instant-NGP [Müller 2022]
o Plenoxels [Fridovich-Keil and Yu 2022]
o TensoRF [Chen and Xu 2022]
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Related Work
Neural Radiance Fields

DVGO [Sun 2022]
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o DVGO [Sun 2022]
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Lagrangian
o Access to primitives

Eulerian (NeRFs)
o Queries in 3D Space

Related Work
Point-Based Representations
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Background
Traditional Point-Based Graphics



Surface Splatting - Zwicker et al. 2001
(EWA – Elliptical Weighted Average)
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Traditional Point-Based Graphics



Surface Splatting - Zwicker et al. 2001
(EWA – Elliptical Weighted Average)

1. Considers oriented points (surfels) as discrete 
samples of a texture function on a surface.
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Surface Splatting - Zwicker et al. 2001
(EWA – Elliptical Weighted Average)

1. Considers oriented points (surfels) as discrete 
samples of a texture function on a surface.

2. A Gaussian reconstruction kernel is used to 
recover a continuous signal.  
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Surface Splatting - Zwicker et al. 2001
(EWA – Elliptical Weighted Average)

1. Considers oriented points (surfels) as discrete 
samples of a texture function on a surface.

2. A Gaussian reconstruction kernel is used to 
recover a continuous signal.  

3. Such that we can sample it in screen space.
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Background
Traditional Point-Based Graphics

Image / Screen Space

Object Space



The important outcomes of this algorithm are:

27

Background
Traditional Point-Based Graphics

Image



The important outcomes of this algorithm are:
1. Moving camera closer, scales the points so the objects have no holes. 
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The important outcomes of this algorithm are:
1. Moving camera closer, scales the points so the objects have no holes.
2. Slanted normals appear as ellipses, so we can create better edges.
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The important outcomes of this algorithm are:
1. Moving camera closer, scales the points so the objects have no holes.
2. Slanted normals appear as ellipses, so we can create better edges.
3. Each sample can be processed independently
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Background
Traditional Point-Based Graphics

Image



o Differentiable Surface Splatting [Yifan ‘19] showed that this process is end-to-end differentiable.

o 3DGS is heavily inspired and builds on top of this line of work.
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Background
Recent Advances in Point Clouds
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Surface Splatting vs Volume Splatting
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position normal
std dev 
appearance

Surface Splatting vs Volume Splatting
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covariance matrix

spherical harmonics

Surface Splatting vs Volume Splatting

position normal
std dev 
appearance



1. How do we blend points in screen space?
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Surface Splatting vs Volume Splatting

[Zwicker1 ‘01] Surface Splatting
[Yifan ‘19] Differentiable Surface Splatting for Point-Based Geometry Proccessing

[Zwicker1 ‘01] / [Yifan ‘19]
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1. How do we blend points in screen space?

[Zwicker1 ‘01] / [Yifan ‘19] [Zwicker2 ‘01] / [Kerbl & Kopanas ‘23]
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Surface Splatting vs Volume Splatting
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[Zwicker1 ‘01] Surface Splatting
[Yifan ‘19] Differentiable Surface Splatting for Point-Based Geometry Proccessing
[Zwicker2 ‘01] EWA Volume Splatting
[Kerbl & Kopanas ‘23] 3D Gaussian Splatting for Real-Time Radiance Field Rendering



1. How do we blend points in screen space?
2. Opacity for each point, allows us to make points disappear.
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Surface Splatting vs Volume Splatting
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[Zwicker2 ‘01] / [Kerbl & Kopanas ‘23]

[Zwicker2 ‘01] EWA Volume Splatting
[Kerbl & Kopanas ‘23] 3D Gaussian Splatting for Real-Time Radiance Field Rendering



1. How do we blend points in screen space?
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Surface Splatting vs Volume Splatting
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[Zwicker2 ‘01] / [Kerbl & Kopanas ‘23]

[Zwicker2 ‘01] EWA Volume Splatting
[Kerbl & Kopanas ‘23] 3D Gaussian Splatting for Real-Time Radiance Field Rendering



1. How do we blend points in screen space?
2. Opacity for each point, allows us to make points disappear.

Ours
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Surface Splatting vs Volume Splatting
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Screenshot from NeRF [Mildenhall ‘20]



Visualization of the 3D ellipsoids
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Visualization of the 3D ellipsoids
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What are the benefits of 3D Gaussians?
Initialization
o No Multi-View-Stereo à  SfM 
o SfM points à No Normals
o Start with isotropic Gaussians
o Can even start from random initialization

Quality
o Complicated geometry (i.e thin structures, vegetation etc) are more volumetric than surface-like
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How do we render?

1. Sort: globally based on depth
2. Splat: compute the shape of the Gaussian 

after projection
3. Blend: alpha composite
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Optimization
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o How do you optimize a covariance matrix?

Optimization
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o How do you optimize a covariance matrix?
o Not all symmetric matrices are covariance matrices. Gradient updates can 

easily make them invalid.

Optimization
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o How do you optimize a covariance matrix?
o Not all symmetric matrices are covariance matrices. Gradient updates can 

easily make them invalid.

o For any rotation and scale this is a valid covariance matrix
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o How do you optimize a covariance matrix?
o Not all symmetric matrices are covariance matrices. Gradient updates can 

easily make them invalid.

o For any rotation and scale this is a valid covariance matrix
o And because R does not optimize well, we use Quaternions.

Optimization
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How did we go from 5 FPS to 100+ FPS?
and from 18h to 40min for training

Using the GPU efficiently:

1. Tiling
Split the image in 16x16 Tiles – helps threads to work collaboratively.

2. Single global sort
GPU sorts millions of primitives fast.
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Now we have all the building blocks to run SGD. 
What will happen?

Optimization
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Optimization

Ablation Run – No densification/adaptive control 52



Optimization

Ablation Run – No densification/adaptive control 53



Optimization

Full Run 54



Optimization

Full Run 55



Densification
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Increase the number of points where necessary:



Densification

Increase the number of points where necessary:
o Points with high positional gradients correspond to regions that are not well reconstructed 

yet.
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Densification

Increase the number of points where necessary:
o Points with high positional gradients correspond to regions that are not well reconstructed 

yet.
o Add more Gaussians - Densify these regions.
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Interactive Results

59

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
or

Google search: “3D Gaussian Splatting”

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/


Interactive Results
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Evaluation
Full MipNeRF360 Dataset + 2 Tanks and Temples + 2 Deep Blending

\

\
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Evaluation
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Evaluation
Full MipNeRF360 Dataset + 2 Tanks and Temples + 2 Deep Blending

We evaluate our algorithm with full training and an early 5min stop. 63



Comparisons
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Flipping between ours and INGP



Ablation Study - Anisotropy

Ground Truth Full Isotropic
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Applications

Long Term: 
1. Robust, efficient and dynamic 3D reconstruction

Short Term:
1. VfX
2. Retail – E-commerce
3. 3D Grounded Video Editing
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3DGS End-to-End Applications
Luma AI PolyCamPostShot

https://radiancefields.com/postshot-releases-v0-2/@LumaLabsAI @PolyCam3D



Gaussian Splatting in Graphics Engines
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Gaussian Splatting in Unity Gaussian Splatting in Unreal Gaussian Splatting in Spline



Gaussian Splatting OLAT captures

71Capture and video from “Infinite Realities”



Gaussian Splatting
Limitations and Progress
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Limitations

1. Handcrafted heuristics for densification.
2. Popping artifacts because of the mean-based sorting.
3. Representation Size

a. 3DGS: 350 - 700MB ( 3-6m of Gaussians )
b. INGP:  15 - 50MB
c. MipNeRF360: 8.6MB
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How this efficiency will boot-strap new ideas, applications and solutions to 
fundamental problems of Radiance Fields?

Wrap-Up

o Gaussian Splatting is fast, efficient, accurate and practical.
o But it doesn’t mean that it comes without limitations.
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Thank you!


